
Face Recognition with Python

Philipp Wagner
http://www.bytefish.de

July 18, 2012

Contents

1 Introduction 1

2 Face Recognition 2
2.1 Face Database . 2

2.1.1 Reading the images with Python . 3
2.2 Eigenfaces . 4

2.2.1 Algorithmic Description . 4
2.2.2 Eigenfaces in Python . 5

2.3 Fisherfaces . 10
2.3.1 Algorithmic Description . 10
2.3.2 Fisherfaces in Python . 12

3 Conclusion 15

1 Introduction

In this document I’ll show you how to implement the Eigenfaces [13] and Fisherfaces [3] method with
Python, so you’ll understand the basics of Face Recognition. All concepts are explained in detail, but a
basic knowledge of Python is assumed. Originally this document was a Guide to Face Recognition with
OpenCV. Since OpenCV now comes with the cv::FaceRecognizer, this document has been reworked
into the official OpenCV documentation at:

• http://docs.opencv.org/trunk/modules/contrib/doc/facerec/index.html

I am doing all this in my spare time and I simply can’t maintain two separate documents on the
same topic any more. So I have decided to turn this document into a guide on Face Recognition with
Python only. You’ll find the very detailed documentation on the OpenCV cv::FaceRecognizer at:

• FaceRecognizer - Face Recognition with OpenCV

– FaceRecognizer API
– Guide to Face Recognition with OpenCV
– Tutorial on Gender Classification
– Tutorial on Face Recognition in Videos
– Tutorial On Saving & Loading a FaceRecognizer

By the way you don’t need to copy and paste the code snippets, all code has been pushed into my
github repository:

• github.com/bytefish

• github.com/bytefish/facerecognition guide

Everything in here is released under a BSD license, so feel free to use it for your projects. You
are currently reading the Python version of the Face Recognition Guide, you can compile the GNU
Octave/MATLAB version with make octave.

1

http://www.bytefish.de
http://www.python.org
http://www.python.org
http://www.opencv.org
http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_api.html
http://docs.opencv.org/trunk/modules/contrib/doc/facerec/index.html
http://www.python.org
http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_api.html
http://docs.opencv.org/trunk/modules/contrib/doc/facerec/index.html
http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_api.html
http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_tutorial.html
http://docs.opencv.org/trunk/modules/contrib/doc/facerec/tutorial/facerec_gender_classification.html
http://docs.opencv.org/trunk/modules/contrib/doc/facerec/tutorial/facerec_video_recognition.html
http://docs.opencv.org/trunk/modules/contrib/doc/facerec/tutorial/facerec_save_load.html
http://www.github.com/bytefish
http://www.github.com/bytefish/facerecognition_guide
http://www.opensource.org/licenses/bsd-license
http://www.python.org
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://www.mathworks.com

2 Face Recognition

Face recognition is an easy task for humans. Experiments in [6] have shown, that even one to three
day old babies are able to distinguish between known faces. So how hard could it be for a computer?
It turns out we know little about human recognition to date. Are inner features (eyes, nose, mouth)
or outer features (head shape, hairline) used for a successful face recognition? How do we analyze an
image and how does the brain encode it? It was shown by David Hubel and Torsten Wiesel, that our
brain has specialized nerve cells responding to specific local features of a scene, such as lines, edges,
angles or movement. Since we don’t see the world as scattered pieces, our visual cortex must somehow
combine the different sources of information into useful patterns. Automatic face recognition is all
about extracting those meaningful features from an image, putting them into a useful representation
and performing some kind of classification on them.
Face recognition based on the geometric features of a face is probably the most intuitive approach to
face recognition. One of the first automated face recognition systems was described in [9]: marker
points (position of eyes, ears, nose, ...) were used to build a feature vector (distance between the
points, angle between them, ...). The recognition was performed by calculating the euclidean distance
between feature vectors of a probe and reference image. Such a method is robust against changes in
illumination by its nature, but has a huge drawback: the accurate registration of the marker points
is complicated, even with state of the art algorithms. Some of the latest work on geometric face
recognition was carried out in [4]. A 22-dimensional feature vector was used and experiments on
large datasets have shown, that geometrical features alone don’t carry enough information for face
recognition.
The Eigenfaces method described in [13] took a holistic approach to face recognition: A facial image is
a point from a high-dimensional image space and a lower-dimensional representation is found, where
classification becomes easy. The lower-dimensional subspace is found with Principal Component
Analysis, which identifies the axes with maximum variance. While this kind of transformation is
optimal from a reconstruction standpoint, it doesn’t take any class labels into account. Imagine a
situation where the variance is generated from external sources, let it be light. The axes with maximum
variance do not necessarily contain any discriminative information at all, hence a classification becomes
impossible. So a class-specific projection with a Linear Discriminant Analysis was applied to face
recognition in [3]. The basic idea is to minimize the variance within a class, while maximizing the
variance between the classes at the same time (Figure 1).
Recently various methods for a local feature extraction emerged. To avoid the high-dimensionality of
the input data only local regions of an image are described, the extracted features are (hopefully) more
robust against partial occlusion, illumation and small sample size. Algorithms used for a local feature
extraction are Gabor Wavelets ([14]), Discrete Cosinus Transform ([5]) and Local Binary Patterns
([1, 11, 12]). It’s still an open research question how to preserve spatial information when applying a
local feature extraction, because spatial information is potentially useful information.

2.1 Face Database

I don’t want to do a toy example here. We are doing face recognition, so you’ll need some face
images! You can either create your own database or start with one of the available databases, face-
rec.org/databases gives an up-to-date overview. Three interesting databases are1:

AT&T Facedatabase The AT&T Facedatabase, sometimes also known as ORL Database of Faces,
contains ten different images of each of 40 distinct subjects. For some subjects, the images were
taken at different times, varying the lighting, facial expressions (open / closed eyes, smiling /
not smiling) and facial details (glasses / no glasses). All the images were taken against a dark
homogeneous background with the subjects in an upright, frontal position (with tolerance for
some side movement).

Yale Facedatabase A The AT&T Facedatabase is good for initial tests, but it’s a fairly easy
database. The Eigenfaces method already has a 97% recognition rate, so you won’t see any
improvements with other algorithms. The Yale Facedatabase A is a more appropriate dataset
for initial experiments, because the recognition problem is harder. The database consists of
15 people (14 male, 1 female) each with 11 grayscale images sized 320 × 243 pixel. There are

1Parts of the description are quoted from face-rec.org.

2

http://en.wikipedia.org/wiki/David_H._Hubel
http://en.wikipedia.org/wiki/Torsten_Wiesel
http://face-rec.org/databases/
http://face-rec.org/databases/
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://vision.ucsd.edu/content/yale-face-database
http://face-rec.org

changes in the light conditions (center light, left light, right light), facial expressions (happy,
normal, sad, sleepy, surprised, wink) and glasses (glasses, no-glasses).

The original images are not cropped or aligned. I’ve prepared a Python script available in
src/py/crop_face.py, that does the job for you.

Extended Yale Facedatabase B The Extended Yale Facedatabase B contains 2414 images of 38
different people in its cropped version. The focus is on extracting features that are robust to
illumination, the images have almost no variation in emotion/occlusion/. . .. I personally think,
that this dataset is too large for the experiments I perform in this document, you better use
the AT&T Facedatabase. A first version of the Yale Facedatabase B was used in [3] to see how
the Eigenfaces and Fisherfaces method (section 2.3) perform under heavy illumination changes.
[10] used the same setup to take 16128 images of 28 people. The Extended Yale Facedatabase
B is the merge of the two databases, which is now known as Extended Yalefacedatabase B.

The face images need to be stored in a folder hierachy similar to <datbase name>/<subject name>/<filename

>.<ext>. The AT&T Facedatabase for example comes in such a hierarchy, see Listing 1.

Listing 1:

philipp@mango :~/ facerec/data/at$ tree

.

|-- README

|-- s1

| |-- 1.pgm

| |-- ...

| |-- 10.pgm

|-- s2

| |-- 1.pgm

| |-- ...

| |-- 10.pgm

...

|-- s40

| |-- 1.pgm

| |-- ...

| |-- 10.pgm

2.1.1 Reading the images with Python

The function in Listing 2 can be used to read in the images for each subfolder of a given directory.
Each directory is given a unique (integer) label, you probably want to store the folder name as well.
The function returns the images and the corresponding classes. This function is really basic and
there’s much to enhance, but it does its job.

Listing 2: src/py/tinyfacerec/util.py

def read_images(path , sz=None):

c = 0

X,y = [], []

for dirname , dirnames , filenames in os.walk(path):

for subdirname in dirnames:

subject_path = os.path.join(dirname , subdirname)

for filename in os.listdir(subject_path):

try:

im = Image.open(os.path.join(subject_path , filename))

im = im.convert("L")

resize to given size (if given)

if (sz is not None):

im = im.resize(sz, Image.ANTIALIAS)

X.append(np.asarray(im , dtype=np.uint8))

y.append(c)

except IOError:

print "I/O error ({0}): {1}".format(errno , strerror)

except:

print "Unexpected error:", sys.exc_info ()[0]

raise

c = c+1

return [X,y]

3

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
file:src/py/tinyfacerec/util.py

2.2 Eigenfaces

The problem with the image representation we are given is its high dimensionality. Two-dimensional
p × q grayscale images span a m = pq-dimensional vector space, so an image with 100 × 100 pixels
lies in a 10, 000-dimensional image space already. That’s way too much for any computations, but are
all dimensions really useful for us? We can only make a decision if there’s any variance in data, so
what we are looking for are the components that account for most of the information. The Principal
Component Analysis (PCA) was independently proposed by Karl Pearson (1901) and Harold Hotelling
(1933) to turn a set of possibly correlated variables into a smaller set of uncorrelated variables. The
idea is that a high-dimensional dataset is often described by correlated variables and therefore only a
few meaningful dimensions account for most of the information. The PCA method finds the directions
with the greatest variance in the data, called principal components.

2.2.1 Algorithmic Description

Let X = {x1, x2, . . . , xn} be a random vector with observations xi ∈ Rd.

1. Compute the mean µ

µ =
1

n

n∑
i=1

xi (1)

2. Compute the the Covariance Matrix S

S =
1

n

n∑
i=1

(xi − µ)(xi − µ)T (2)

3. Compute the eigenvalues λi and eigenvectors vi of S

Svi = λivi, i = 1, 2, . . . , n (3)

4. Order the eigenvectors descending by their eigenvalue. The k principal components are the
eigenvectors corresponding to the k largest eigenvalues.

The k principal components of the observed vector x are then given by:

y = WT (x− µ) (4)

where W = (v1, v2, . . . , vk). The reconstruction from the PCA basis is given by:

x = Wy + µ (5)

The Eigenfaces method then performs face recognition by:

1. Projecting all training samples into the PCA subspace (using Equation 4).

2. Projecting the query image into the PCA subspace (using Listing 5).

3. Finding the nearest neighbor between the projected training images and the projected query
image.

Still there’s one problem left to solve. Imagine we are given 400 images sized 100 × 100 pixel. The
Principal Component Analysis solves the covariance matrix S = XXT , where size(X) = 10000× 400
in our example. You would end up with a 10000×10000 matrix, roughly 0.8GB. Solving this problem
isn’t feasible, so we’ll need to apply a trick. From your linear algebra lessons you know that a M ×N
matrix with M > N can only have N − 1 non-zero eigenvalues. So it’s possible to take the eigenvalue
decomposition S = XTX of size NxN instead:

XTXvi = λivi (6)

and get the original eigenvectors of S = XXT with a left multiplication of the data matrix:

XXT (Xvi) = λi(Xvi) (7)

The resulting eigenvectors are orthogonal, to get orthonormal eigenvectors they need to be normalized
to unit length. I don’t want to turn this into a publication, so please look into [7] for the derivation
and proof of the equations.

4

http://en.wikipedia.org/wiki/Karl_Pearson
http://en.wikipedia.org/wiki/Harold_Hotelling

2.2.2 Eigenfaces in Python

We’ve already seen, that the Eigenfaces and Fisherfaces method expect a data matrix with observations
by row (or column if you prefer it). Listing 3 defines two functions to reshape a list of multi-dimensional
data into a data matrix. Note, that all samples are assumed to be of equal size.

Listing 3: src/py/tinyfacerec/util.py

def asRowMatrix(X):

if len(X) == 0:

return np.array ([])

mat = np.empty ((0, X[0]. size), dtype=X[0]. dtype)

for row in X:

mat = np.vstack ((mat , np.asarray(row).reshape (1,-1)))

return mat

def asColumnMatrix(X):

if len(X) == 0:

return np.array ([])

mat = np.empty ((X[0].size , 0), dtype=X[0]. dtype)

for col in X:

mat = np.hstack ((mat , np.asarray(col).reshape (-1,1)))

return mat

Translating the PCA from the algorithmic description of section 2.2.1 to Python is almost trivial.
Don’t copy and paste from this document, the source code is available in folder src/py/tinyfacerec

. Listing 4 implements the Principal Component Analysis given by Equation 1, 2 and 3. It also
implements the inner-product PCA formulation, which occurs if there are more dimensions than
samples. You can shorten this code, I just wanted to point out how it works.

Listing 4: src/py/tinyfacerec/subspace.py

def pca(X, y, num_components =0):

[n,d] = X.shape

if (num_components <= 0) or (num_components >n):

num_components = n

mu = X.mean(axis =0)

X = X - mu

if n>d:

C = np.dot(X.T,X)

[eigenvalues ,eigenvectors] = np.linalg.eigh(C)

else:

C = np.dot(X,X.T)

[eigenvalues ,eigenvectors] = np.linalg.eigh(C)

eigenvectors = np.dot(X.T,eigenvectors)

for i in xrange(n):

eigenvectors [:,i] = eigenvectors [:,i]/np.linalg.norm(eigenvectors [:,i])

or simply perform an economy size decomposition

eigenvectors , eigenvalues , variance = np.linalg.svd(X.T, full_matrices=False)

sort eigenvectors descending by their eigenvalue

idx = np.argsort(-eigenvalues)

eigenvalues = eigenvalues[idx]

eigenvectors = eigenvectors [:,idx]

select only num_components

eigenvalues = eigenvalues [0: num_components].copy()

eigenvectors = eigenvectors [:,0: num_components].copy()

return [eigenvalues , eigenvectors , mu]

The observations are given by row, so the projection in Equation 4 needs to be rearranged a little:

Listing 5: src/py/tinyfacerec/subspace.py

def project(W, X, mu=None):

if mu is None:

return np.dot(X,W)

return np.dot(X - mu, W)

The same applies to the reconstruction in Equation 5:

Listing 6: src/py/tinyfacerec/subspace.py

5

file:src/py/tinyfacerec/util.py
http://www.python.org
file:src/py/tinyfacerec/subspace.py
file:src/py/tinyfacerec/subspace.py
file:src/py/tinyfacerec/subspace.py

def reconstruct(W, Y, mu=None):

if mu is None:

return np.dot(Y,W.T)

return np.dot(Y, W.T) + mu

Now that everything is defined it’s time for the fun stuff. The face images are read with Listing 2
and then a full PCA (see Listing 4) is performed. I’ll use the great matplotlib library for plotting in
Python, please install it if you haven’t done already.

Listing 7: src/py/scripts/example pca.py

import sys

append tinyfacerec to module search path

sys.path.append("..")

import numpy and matplotlib colormaps

import numpy as np

import tinyfacerec modules

from tinyfacerec.subspace import pca

from tinyfacerec.util import normalize , asRowMatrix , read_images

from tinyfacerec.visual import subplot

read images

[X,y] = read_images("/home/philipp/facerec/data/at")

perform a full pca

[D, W, mu] = pca(asRowMatrix(X), y)

That’s it already. Pretty easy, no? Each principal component has the same length as the original
image, thus it can be displayed as an image. [13] referred to these ghostly looking faces as Eigenfaces,
that’s where the Eigenfaces method got its name from. We’ll now want to look at the Eigenfaces,
but first of all we need a method to turn the data into a representation matplotlib understands.
The eigenvectors we have calculated can contain negative values, but the image data is excepted as
unsigned integer values in the range of 0 to 255. So we need a function to normalize the data first
(Listing 8):

Listing 8: src/py/tinyfacerec/util.py

def normalize(X, low , high , dtype=None):

X = np.asarray(X)

minX , maxX = np.min(X), np.max(X)

normalize to [0...1].

X = X - float(minX)

X = X / float ((maxX - minX))

scale to [low ... high].

X = X * (high -low)

X = X + low

if dtype is None:

return np.asarray(X)

return np.asarray(X, dtype=dtype)

In Python we’ll then define a subplot method (see src/py/tinyfacerec/visual.py) to simplify the
plotting. The method takes a list of images, a title, color scale and finally generates a subplot:

Listing 9: src/py/tinyfacerec/visual.py

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.cm as cm

def create_font(fontname=’Tahoma ’, fontsize =10):

return { ’fontname ’: fontname , ’fontsize ’:fontsize }

def subplot(title , images , rows , cols , sptitle="subplot", sptitles =[], colormap=cm.

gray , ticks_visible=True , filename=None):

fig = plt.figure ()

main title

fig.text(.5, .95, title , horizontalalignment=’center ’)

for i in xrange(len(images)):

ax0 = fig.add_subplot(rows ,cols ,(i+1))

plt.setp(ax0.get_xticklabels (), visible=False)

plt.setp(ax0.get_yticklabels (), visible=False)

6

http://matplotlib.sourceforge.net/
http://www.python.org
file:src/py/scripts/example_pca.py
http://matplotlib.sourceforge.net/
file:src/py/tinyfacerec/util.py
src/py/tinyfacerec/visual.py
file:src/py/tinyfacerec/visual.py

if len(sptitles) == len(images):

plt.title("%s #%s" % (sptitle , str(sptitles[i])), create_font(’Tahoma ’ ,10))

else:

plt.title("%s #%d" % (sptitle , (i+1)), create_font(’Tahoma ’ ,10))

plt.imshow(np.asarray(images[i]), cmap=colormap)

if filename is None:

plt.show()

else:

fig.savefig(filename)

This simplified the Python script in Listing 10 to:

Listing 10: src/py/scripts/example pca.py

import matplotlib.cm as cm

turn the first (at most) 16 eigenvectors into grayscale

images (note: eigenvectors are stored by column !)

E = []

for i in xrange(min(len(X), 16)):

e = W[:,i]. reshape(X[0]. shape)

E.append(normalize(e,0 ,255))

plot them and store the plot to "python_eigenfaces.pdf"

subplot(title="Eigenfaces AT&T Facedatabase", images=E, rows=4, cols=4, sptitle="

Eigenface", colormap=cm.jet , filename="python_pca_eigenfaces.png")

I’ve used the jet colormap, so you can see how the grayscale values are distributed within the spe-
cific Eigenfaces. You can see, that the Eigenfaces do not only encode facial features, but also the
illumination in the images (see the left light in Eigenface #4, right light in Eigenfaces #5):

Eigenface #1 Eigenface #2 Eigenface #3 Eigenface #4

Eigenface #5 Eigenface #6 Eigenface #7 Eigenface #8

Eigenface #9 Eigenface #10 Eigenface #11 Eigenface #12

Eigenface #13 Eigenface #14 Eigenface #15 Eigenface #16

Eigenfaces AT&T Facedatabase

We’ve already seen in Equation 5, that we can reconstruct a face from its lower dimensional approxi-
mation. So let’s see how many Eigenfaces are needed for a good reconstruction. I’ll do a subplot with
10, 30, . . . , 310 Eigenfaces:

Listing 11: src/py/scripts/example pca.py

from tinyfacerec.subspace import project , reconstruct

reconstruction steps

steps=[i for i in xrange (10, min(len(X), 320), 20)]

E = []

for i in xrange(min(len(steps), 16)):

numEvs = steps[i]

7

http://www.python.org
file:src/py/scripts/example_pca.py
file:src/py/scripts/example_pca.py

P = project(W[:,0: numEvs], X[0]. reshape (1,-1), mu)

R = reconstruct(W[:,0: numEvs], P, mu)

reshape and append to plots

R = R.reshape(X[0]. shape)

E.append(normalize(R,0 ,255))

plot them and store the plot to "python_reconstruction.pdf"

subplot(title="Reconstruction AT&T Facedatabase", images=E, rows=4, cols=4, sptitle="

Eigenvectors", sptitles=steps , colormap=cm.gray , filename="

python_pca_reconstruction.png")

10 Eigenvectors are obviously not sufficient for a good image reconstruction, 50 Eigenvectors may
already be sufficient to encode important facial features. You’ll get a good reconstruction with ap-
proximately 300 Eigenvectors for the AT&T Facedatabase. There are rule of thumbs how many
Eigenfaces you should choose for a successful face recognition, but it heavily depends on the input
data. [15] is the perfect point to start researching for this.

Eigenvectors #10 Eigenvectors #30 Eigenvectors #50 Eigenvectors #70

Eigenvectors #90 Eigenvectors #110 Eigenvectors #130 Eigenvectors #150

Eigenvectors #170 Eigenvectors #190 Eigenvectors #210 Eigenvectors #230

Eigenvectors #250 Eigenvectors #270 Eigenvectors #290 Eigenvectors #310

Reconstruction AT&T Facedatabase

Now we have got everything to implement the Eigenfaces method. Python is object oriented and so is
our Eigenfaces model. Let’s recap: The Eigenfaces method is basically a Pricipal Component Analysis
with a Nearest Neighbor model. Some publications report about the influence of the distance metric
(I can’t support these claims with my research), so various distance metrics for the Nearest Neighbor
should be supported. Listing 12 defines an AbstractDistance as the abstract base class for each distance
metric. Every subclass overrides the call operator __call__ as shown for the Euclidean Distance and
the Negated Cosine Distance. If you need more distance metrics, please have a look at the distance
metrics implemented in https://www.github.com/bytefish/facerec.

Listing 12: src/py/tinyfacerec/distance.py

import numpy as np

class AbstractDistance(object):

def __init__(self , name):

self._name = name

def __call__(self ,p,q):

raise NotImplementedError("Every AbstractDistance must implement the __call__

method.")

@property

def name(self):

return self._name

8

http://www.python.org
https://www.github.com/bytefish/facerec
file:src/py/tinyfacerec/distance.py

def __repr__(self):

return self._name

class EuclideanDistance(AbstractDistance):

def __init__(self):

AbstractDistance.__init__(self ,"EuclideanDistance")

def __call__(self , p, q):

p = np.asarray(p).flatten ()

q = np.asarray(q).flatten ()

return np.sqrt(np.sum(np.power ((p-q) ,2)))

class CosineDistance(AbstractDistance):

def __init__(self):

AbstractDistance.__init__(self ,"CosineDistance")

def __call__(self , p, q):

p = np.asarray(p).flatten ()

q = np.asarray(q).flatten ()

return -np.dot(p.T,q) / (np.sqrt(np.dot(p,p.T)*np.dot(q,q.T)))

The Eigenfaces and Fisherfaces method both share common methods, so we’ll define a base prediction
model in Listing 13. I don’t want to do a full k-Nearest Neighbor implementation here, because (1)
the number of neighbors doesn’t really matter for both methods and (2) it would confuse people. If
you are implementing it in a language of your choice, you should really separate the feature extraction
and classification from the model itself. A real generic approach is given in my facerec framework.
However, feel free to extend these basic classes for your needs.

Listing 13: src/py/tinyfacerec/model.py

import numpy as np

from util import asRowMatrix

from subspace import pca , lda , fisherfaces , project

from distance import EuclideanDistance

class BaseModel(object):

def __init__(self , X=None , y=None , dist_metric=EuclideanDistance (), num_components

=0):

self.dist_metric = dist_metric

self.num_components = 0

self.projections = []

self.W = []

self.mu = []

if (X is not None) and (y is not None):

self.compute(X,y)

def compute(self , X, y):

raise NotImplementedError("Every BaseModel must implement the compute method.")

def predict(self , X):

minDist = np.finfo(’float ’).max

minClass = -1

Q = project(self.W, X.reshape (1,-1), self.mu)

for i in xrange(len(self.projections)):

dist = self.dist_metric(self.projections[i], Q)

if dist < minDist:

minDist = dist

minClass = self.y[i]

return minClass

Listing 20 then subclasses the EigenfacesModel from the BaseModel, so only the compute method needs to
be overriden with our specific feature extraction. The prediction is a 1-Nearest Neighbor search with
a distance metric.

Listing 14: src/py/tinyfacerec/model.py

class EigenfacesModel(BaseModel):

9

https://www.github.com/bytefish/facerec
file:src/py/tinyfacerec/model.py
file:src/py/tinyfacerec/model.py

def __init__(self , X=None , y=None , dist_metric=EuclideanDistance (), num_components

=0):

super(EigenfacesModel , self).__init__(X=X,y=y,dist_metric=dist_metric ,

num_components=num_components)

def compute(self , X, y):

[D, self.W, self.mu] = pca(asRowMatrix(X),y, self.num_components)

store labels

self.y = y

store projections

for xi in X:

self.projections.append(project(self.W, xi.reshape (1,-1), self.mu))

Now that the EigenfacesModel is defined, it can be used to learn the Eigenfaces and generate predictions.
In the following Listing 15 we’ll load the Yale Facedatabase A and perform a prediction on the first
image.

Listing 15: src/py/scripts/example model eigenfaces.py

import sys

append tinyfacerec to module search path

sys.path.append("..")

import numpy and matplotlib colormaps

import numpy as np

import tinyfacerec modules

from tinyfacerec.util import read_images

from tinyfacerec.model import EigenfacesModel

read images

[X,y] = read_images("/home/philipp/facerec/data/yalefaces_recognition")

compute the eigenfaces model

model = EigenfacesModel(X[1:], y[1:])

get a prediction for the first observation

print "expected =", y[0], "/", "predicted =", model.predict(X[0])

2.3 Fisherfaces

The Linear Discriminant Analysis was invented by the great statistician Sir R. A. Fisher, who success-
fully used it for classifying flowers in his 1936 paper The use of multiple measurements in taxonomic
problems [8]. But why do we need another dimensionality reduction method, if the Principal Compo-
nent Analysis (PCA) did such a good job?
The PCA finds a linear combination of features that maximizes the total variance in data. While
this is clearly a powerful way to represuccsent data, it doesn’t consider any classes and so a lot of
discriminative information may be lost when throwing components away. Imagine a situation where
the variance is generated by an external source, let it be the light. The components identified by a
PCA do not necessarily contain any discriminative information at all, so the projected samples are
smeared together and a classification becomes impossible.
In order to find the combination of features that separates best between classes the Linear Discriminant
Analysis maximizes the ratio of between-classes to within-classes scatter. The idea is simple: same
classes should cluster tightly together, while different classes are as far away as possible from each
other. This was also recognized by Belhumeur, Hespanha and Kriegman and so they applied a
Discriminant Analysis to face recognition in [3].

2.3.1 Algorithmic Description

Let X be a random vector with samples drawn from c classes:

X = {X1, X2, . . . , Xc} (8)

Xi = {x1, x2, . . . , xn} (9)

The scatter matrices SB and SW are calculated as:

10

file:src/py/scripts/example_model_eigenfaces.py
http://en.wikipedia.org/wiki/Ronald_Fisher
http://www.cs.columbia.edu/~belhumeur/
http://www.ece.ucsb.edu/~hespanha/
http://cseweb.ucsd.edu/~kriegman/

x

y

sW3

sB3

µ1

µ2

µ3

sB2

sB1

sW1

sW2

µ

Figure 1: This figure shows the scatter matrices SB and SW for a 3 class problem. µ represents
the total mean and [µ1, µ2, µ3] are the class means.

SB =

c∑
i=1

Ni(µi − µ)(µi − µ)T (10)

SW =

c∑
i=1

∑
xj∈Xi

(xj − µi)(xj − µi)
T (11)

, where µ is the total mean:

µ =
1

N

N∑
i=1

xi (12)

And µi is the mean of class i ∈ {1, . . . , c}:

µi =
1

|Xi|
∑

xj∈Xi

xj (13)

Fisher’s classic algorithm now looks for a projection W , that maximizes the class separability criterion:

Wopt = arg maxW

|WTSBW |
|WTSWW |

(14)

Following [3], a solution for this optimization problem is given by solving the General Eigenvalue
Problem:

SBvi = λiSwvi

S−1W SBvi = λivi (15)

There’s one problem left to solve: The rank of SW is at most (N−c), with N samples and c classes. In
pattern recognition problems the number of samples N is almost always samller than the dimension
of the input data (the number of pixels), so the scatter matrix SW becomes singular (see [2]). In
[3] this was solved by performing a Principal Component Analysis on the data and projecting the

11

samples into the (N − c)-dimensional space. A Linear Discriminant Analysis was then performed on
the reduced data, because SW isn’t singular anymore.
The optimization problem can be rewritten as:

Wpca = arg maxW |WTSTW | (16)

Wfld = arg maxW

|WTWT
pcaSBWpcaW |

|WTWT
pcaSWWpcaW |

(17)

The transformation matrix W , that projects a sample into the (c− 1)-dimensional space is then given
by:

W = WT
fldW

T
pca (18)

One final note: Although SW and SB are symmetric matrices, the product of two symmetric matrices
is not necessarily symmetric. so you have to use an eigenvalue solver for general matrices. OpenCV’s
cv::eigen only works for symmetric matrices in its current version; since eigenvalues and singular values
aren’t equivalent for non-symmetric matrices you can’t use a Singular Value Decomposition (SVD)
either.

2.3.2 Fisherfaces in Python

Translating the Linear Discriminant Analysis to Python is almost trivial again, see Listing 16. For
projecting and reconstructing from the basis you can use the functions from Listing 5 and 6.

Listing 16: src/py/tinyfacerec/subspace.py

def lda(X, y, num_components =0):

y = np.asarray(y)

[n,d] = X.shape

c = np.unique(y)

if (num_components <= 0) or (num_component >(len(c) -1)):

num_components = (len(c) -1)

meanTotal = X.mean(axis =0)

Sw = np.zeros((d, d), dtype=np.float32)

Sb = np.zeros((d, d), dtype=np.float32)

for i in c:

Xi = X[np.where(y==i)[0] ,:]

meanClass = Xi.mean(axis =0)

Sw = Sw + np.dot((Xi -meanClass).T, (Xi-meanClass))

Sb = Sb + n * np.dot((meanClass - meanTotal).T, (meanClass - meanTotal))

eigenvalues , eigenvectors = np.linalg.eig(np.linalg.inv(Sw)*Sb)

idx = np.argsort(-eigenvalues.real)

eigenvalues , eigenvectors = eigenvalues[idx], eigenvectors [:,idx]

eigenvalues = np.array(eigenvalues [0: num_components].real , dtype=np.float32 , copy=

True)

eigenvectors = np.array(eigenvectors [0: ,0: num_components].real , dtype=np.float32 ,

copy=True)

return [eigenvalues , eigenvectors]

The functions to perform a PCA (Listing 4) and LDA (Listing 16) are now defined, so we can go
ahead and implement the Fisherfaces from Equation 18.

Listing 17: src/py/tinyfacerec/subspace.py

def fisherfaces(X,y,num_components =0):

y = np.asarray(y)

[n,d] = X.shape

c = len(np.unique(y))

[eigenvalues_pca , eigenvectors_pca , mu_pca] = pca(X, y, (n-c))

[eigenvalues_lda , eigenvectors_lda] = lda(project(eigenvectors_pca , X, mu_pca), y,

num_components)

eigenvectors = np.dot(eigenvectors_pca ,eigenvectors_lda)

return [eigenvalues_lda , eigenvectors , mu_pca]

For this example I am going to use the Yale Facedatabase A, just because the plots are nicer. Each
Fisherface has the same length as an original image, thus it can be displayed as an image. We’ll again
load the data, learn the Fisherfaces and make a subplot of the first 16 Fisherfaces.

12

http://opencv.willowgarage.com/documentation/cpp/operations_on_arrays.html#cv-eigen
http://www.python.org
file:src/py/tinyfacerec/subspace.py
file:src/py/tinyfacerec/subspace.py

Listing 18: src/py/scripts/example fisherfaces.py

import sys

append tinyfacerec to module search path

sys.path.append("..")

import numpy and matplotlib colormaps

import numpy as np

import tinyfacerec modules

from tinyfacerec.subspace import fisherfaces

from tinyfacerec.util import normalize , asRowMatrix , read_images

from tinyfacerec.visual import subplot

read images

[X,y] = read_images("/home/philipp/facerec/data/yalefaces_recognition")

perform a full pca

[D, W, mu] = fisherfaces(asRowMatrix(X), y)

#import colormaps

import matplotlib.cm as cm

turn the first (at most) 16 eigenvectors into grayscale

images (note: eigenvectors are stored by column !)

E = []

for i in xrange(min(W.shape [1], 16)):

e = W[:,i]. reshape(X[0]. shape)

E.append(normalize(e,0 ,255))

plot them and store the plot to "python_fisherfaces_fisherfaces.pdf"

subplot(title="Fisherfaces AT&T Facedatabase", images=E, rows=4, cols=4, sptitle="

Fisherface", colormap=cm.jet , filename="python_fisherfaces_fisherfaces.pdf")

The Fisherfaces method learns a class-specific transformation matrix, so the they do not capture
illumination as obviously as the Eigenfaces method. The Discriminant Analysis instead finds the facial
features to discriminate between the persons. It’s important to mention, that the performance of the
Fisherfaces heavily depends on the input data as well. Practically said: if you learn the Fisherfaces for
well-illuminated pictures only and you try to recognize faces in bad-illuminated scenes, then method
is likely to find the wrong components (just because those features may not be predominant on
bad illuminated images). This is somewhat logical, since the method had no chance to learn the
illumination.

Fisherface #1 Fisherface #2 Fisherface #3 Fisherface #4

Fisherface #5 Fisherface #6 Fisherface #7 Fisherface #8

Fisherface #9 Fisherface #10 Fisherface #11 Fisherface #12

Fisherface #13 Fisherface #14

Fisherfaces AT&T Facedatabase

The Fisherfaces allow a reconstruction of the projected image, just like the Eigenfaces did. But since
we only identified the features to distinguish between subjects, you can’t expect a nice approximation
of the original image. We can rewrite Listing 11 for the Fisherfaces method into Listing 19, but this
time we’ll project the sample image onto each of the Fisherfaces instead. So you’ll have a visualization,
which features each Fisherface describes.

13

file:src/py/scripts/example_fisherfaces.py

Listing 19: src/py/scripts/example fisherfaces.py

from tinyfacerec.subspace import project , reconstruct

E = []

for i in xrange(min(W.shape [1], 16)):

e = W[:,i]. reshape (-1,1)

P = project(e, X[0]. reshape (1,-1), mu)

R = reconstruct(e, P, mu)

reshape and append to plots

R = R.reshape(X[0]. shape)

E.append(normalize(R,0 ,255))

plot them and store the plot to "python_reconstruction.pdf"

subplot(title="Fisherfaces Reconstruction Yale FDB", images=E, rows=4, cols=4, sptitle

="Fisherface", colormap=cm.gray , filename="python_fisherfaces_reconstruction.pdf")

Fisherface #1 Fisherface #2 Fisherface #3 Fisherface #4

Fisherface #5 Fisherface #6 Fisherface #7 Fisherface #8

Fisherface #9 Fisherface #10 Fisherface #11 Fisherface #12

Fisherface #13 Fisherface #14

Fisherfaces Reconstruction Yale FDB

The implementation details are not repeated in this section. For the Fisherfaces method a similar
model to the EigenfacesModel in Listing 20 must be defined.

Listing 20: src/py/tinyfacerec/model.py

class FisherfacesModel(BaseModel):

def __init__(self , X=None , y=None , dist_metric=EuclideanDistance (), num_components

=0):

super(FisherfacesModel , self).__init__(X=X,y=y,dist_metric=dist_metric ,

num_components=num_components)

def compute(self , X, y):

[D, self.W, self.mu] = fisherfaces(asRowMatrix(X),y, self.num_components)

store labels

self.y = y

store projections

for xi in X:

self.projections.append(project(self.W, xi.reshape (1,-1), self.mu))

Once the FisherfacesModel is defined, it can be used to learn the Fisherfaces and generate predictions.
In the following Listing 21 we’ll load the Yale Facedatabase A and perform a prediction on the first
image.

Listing 21: src/py/scripts/example model fisherfaces.py

14

file:src/py/scripts/example_fisherfaces.py
file:src/py/tinyfacerec/model.py
file:src/py/scripts/example_model_fisherfaces.py

import sys

append tinyfacerec to module search path

sys.path.append("..")

import numpy and matplotlib colormaps

import numpy as np

import tinyfacerec modules

from tinyfacerec.util import read_images

from tinyfacerec.model import FisherfacesModel

read images

[X,y] = read_images("/home/philipp/facerec/data/yalefaces_recognition")

compute the eigenfaces model

model = FisherfacesModel(X[1:], y[1:])

get a prediction for the first observation

print "expected =", y[0], "/", "predicted =", model.predict(X[0])

3 Conclusion

This document explained and implemented the Eigenfaces [13] and the Fisherfaces [3] method with
GNU Octave/MATLAB, Python. It gave you some ideas to get started and research this highly active
topic. I hope you had fun reading and I hope you think cv::FaceRecognizer is a useful addition to
OpenCV.
More maybe here:

• http://www.opencv.org

• http://www.bytefish.de/blog

• http://www.github.com/bytefish

References

[1] Ahonen, T., Hadid, A., and Pietikainen, M. Face Recognition with Local Binary Patterns.
Computer Vision - ECCV 2004 (2004), 469–481.

[2] A.K. Jain, S. J. R. Small sample size effects in statistical pattern recognition: Recommendations
for practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 3 (1991),
252–264.

[3] Belhumeur, P. N., Hespanha, J., and Kriegman, D. Eigenfaces vs. fisherfaces: Recogni-
tion using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine
Intelligence 19, 7 (1997), 711–720.

[4] Brunelli, R., and Poggio, T. Face recognition through geometrical features. In European
Conference on Computer Vision (ECCV) (1992), pp. 792–800.

[5] Cardinaux, F., Sanderson, C., and Bengio, S. User authentication via adapted statistical
models of face images. IEEE Transactions on Signal Processing 54 (January 2006), 361–373.

[6] Chiara Turati, Viola Macchi Cassia, F. S., and Leo, I. Newborns face recognition: Role
of inner and outer facial features. Child Development 77, 2 (2006), 297–311.

[7] Duda, R. O., Hart, P. E., and Stork, D. G. Pattern Classification (2nd Edition), 2 ed.
November 2001.

[8] Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals Eugen. 7
(1936), 179–188.

[9] Kanade, T. Picture processing system by computer complex and recognition of human faces.
PhD thesis, Kyoto University, November 1973.

[10] Lee, K.-C., Ho, J., and Kriegman, D. Acquiring linear subspaces for face recognition under
variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 27,
5 (2005).

15

http://www.gnu.org/software/octave
http://mathworks.com
http://www.python.org
http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_api.html
http://www.opencv.org
http://www.bytefish.de/blog
http://www.github.com/bytefish

[11] Maturana, D., Mery, D., and Soto, A. Face recognition with local binary patterns, spatial
pyramid histograms and naive bayes nearest neighbor classification. 2009 International Confer-
ence of the Chilean Computer Science Society (SCCC) (2009), 125–132.

[12] Rodriguez, Y. Face Detection and Verification using Local Binary Patterns. PhD thesis, École
Polytechnique Fédérale De Lausanne, October 2006.

[13] Turk, M., and Pentland, A. Eigenfaces for recognition. Journal of Cognitive Neuroscience
3 (1991), 71–86.

[14] Wiskott, L., Fellous, J.-M., Krüger, N., and Malsburg, C. V. D. Face recognition
by elastic bunch graph matching. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND
MACHINE INTELLIGENCE 19 (1997), 775–779.

[15] Zhao, W., Chellappa, R., Phillips, P., and Rosenfeld, A. Face recognition: A literature
survey. Acm Computing Surveys (CSUR) 35, 4 (2003), 399–458.

16

	Introduction
	Face Recognition
	Face Database
	Reading the images with Python

	Eigenfaces
	Algorithmic Description
	Eigenfaces in Python

	Fisherfaces
	Algorithmic Description
	Fisherfaces in Python

	Conclusion

